Advanced Topics in Random Graphs Exercise Sheet 5

Question 1. Prove Theorems 5.6 and 5.8.

Question 2. Let H be a graph and let \mathcal{H} be the e(H)-uniform hypergraph on $E(K_n)$ encoding copies of H. Show that there is some c such that \mathcal{H} satisfies the container lemma for $\tau = n^{-\frac{1}{m_2(H)}}$ where $m_2(H)$ is the maximum subgraph density of H.

Give a container theorem for H-free graphs.

Question 3. Give a supersaturation version of the Erdős-Stone-Simonivits theorem and prove Theorem 5.14.

Question 4. Show that there exist constants $\delta > 0$ and $k_0 \in \mathbb{N}$ such that the following holds for every $k \ge k_0$ and $n \in \mathbb{N}$. Given a graph G on n vertices with $kn^{\frac{3}{2}}$ many edges, there exists a collection \mathcal{H} of at least $\delta^3 k^4 n^2$ copies of C_4 in G such that:

- a) Each edge belongs to at most $\delta^2 k^3 \sqrt{n}$ members of \mathcal{H} ;
- b) Each pair of edges is contained in at most $\delta k \sqrt{n}$ members of \mathcal{H} .

(Hint : You can find a large family of C_{4s} by double counting paths of length 2. Try to build a suitable collection one by one by keeping track of the number of C_{4s} we can add which don't violate a) or b).)

Question 5. By repeatedly applying the container lemma to the hypergraphs given by the previous question, show that there exists constants k_0 and C > 0 such for all $k_0 \le k \le \frac{n^{\frac{1}{6}}}{\log n}$ there exists a collection $\mathcal{G}(n,k)$ of at most

$$\exp\left(O\left(\frac{\log k}{k}n^{\frac{3}{2}}\right)\right)$$

many graphs on n vertices such that $e(G) \leq kn^{\frac{3}{2}}$ for each $G \in \mathcal{G}(n,k)$ and every C_4 -free graph on n vertices is contained in some $G \in \mathcal{G}(n,k)$.

Deduce that there are at most $2^{O(n^{\frac{3}{2}})}$ many C_4 -free graphs on *n* vertices.